Skip to content or footer

Exercises: systems with two variables

  1. 1

    Test your knowledge!

    1. Put the steps of the equation system solving process in the correct order!

      To do this, enter the numbers of the steps in the solution field one after the other without spaces (e.g. 123).

      1. Plug the variable into an equation.

      2. Set equal the equations I\mathrm{I} and II\mathrm{II}.

      3. Solve the resulting equation for one variable.


    2. Which of the following describes an intersection point?

    3. What do you need llnear systems of equations for?

  2. 2

    Solve the following systems of equations!

    1. II)3x+4=2y\hphantom{\mathrm{I}}\mathrm{I}) \quad 3x + 4 = 2y

      II)4y=2x+10\mathrm{II}) \quad 4y = 2x + 10

    2. II)y1=2x+3\hphantom{\mathrm{I}} \mathrm{I}) \quad y - 1 = 2x + 3

      II)2y2=5x1\mathrm{II}) \quad 2y - 2 = 5x - 1

    3. II)2x+3y=4x5\hphantom{\mathrm{I}} \mathrm{I}) \quad 2x + 3y = 4x - 5

      II)3x2y=2y+8\mathrm{II}) \quad 3x - 2y = 2y + 8

  3. 3

    Solve the linear systems of equations using the substitution method.

    1. II3x+4=y\hphantom{\mathrm{I}}\mathrm{I} \quad 3x + 4 = y

      II4y3x=9\mathrm{II} \quad 4y -3x = 9

    2. II3s4t=4\hphantom{\mathrm{I}}\mathrm{I} \quad 3s - 4t = 4

      II4s+t=2\mathrm{II} \quad 4s + t = -2

  4. 4

    Solve the following system of equations using the addition method!

    I4x+2y=4II6x3y=3\def\arraystretch{1.25} \begin{array}{lrrll}\mathrm{I} &4x+2y &= &4 \\\mathrm{II} &6x-3y &= &-3\end{array}

  5. 5

    Test your knowledge! Which method is useful to solve the following systems of equations?

    1. II3x+6y=2\hphantom{\mathrm{I}}\mathrm{I} \quad 3x + 6y = 2

      II4x+2=y\mathrm{II} \quad 4x + 2 = y

    2. IIs=4t7\hphantom{\mathrm{I}}\mathrm{I} \quad s = 4t -7

      IIs=2+3t\mathrm{II} \quad s = -2 + 3t

    3. II2a2b=3\hphantom{\mathrm{I}}\mathrm{I} \quad 2a - 2b = 3

      II5a+2b=6\mathrm{II} \quad 5a + 2b = 6

  6. 6

    Solve with the most appropriate method.

    1. Ie+4f=20II3e+4f=12\def\arraystretch{1.25} \begin{array}{lrcc}\mathrm{I}& e+4f&=&20\\\mathrm{II}&-3e+4f&=&-12\end{array}

    2. I7y=5+2xII4x14y=46\def\arraystretch{1.25} \begin{array}{lrcl}\mathrm{I}& 7y&=&5+2x\\\mathrm{II}&4x-14y&=&46\end{array}

    3. I3.5=0.5k+2.5mII10m=14+2k\def\arraystretch{1.25} \begin{array}{lrcl}\mathrm{I}& 3.5&=&-0.5k+2.5m\\\mathrm{II}&10m&=&14+2k\end{array}

  7. 7

    Determine the solution sets of the following systems of equations.

    1. I5y3x=1II x=y+1\def\arraystretch{1.25} \begin{array}{ccccc}\mathrm{I}&5y& -& 3x& =& 1\\\mathrm{II}&  x &=& y& +& 1\end{array}

    2. I4x+5y=32IIy=5x11\def\arraystretch{1.25} \begin{array}{ccccc}\mathrm{I}&4x&+&5y&=&32\\\mathrm{II}&y&=&5x&-&11\end{array}

    3. I15y4x=50IIx=y+7\def\arraystretch{1.25} \begin{array}{cccc}\mathrm{I}&15y&-&4x&=&-50\\\mathrm{II}&x&=&y&+&7\end{array}

    4. I3x=y+15II2y10=2x\def\arraystretch{1.25} \begin{array}{cccc}\mathrm{I}&3x&=&y&+&15\\\mathrm{II}&2y&-&10&=&2x\end{array}

  8. 8

    Solve the following systems of equations with 2 equations and 2 variables first graphically and then by computation.

    1. Iy3x=1IIx+y=1\def\arraystretch{1.25} \begin{array}{ccccc}\mathrm{I}&y& -& 3x& =& 1\\\mathrm{II}& x &+& y &=& 1\end{array}

    2. I2y+5x=3IIxy=1\def\arraystretch{1.25} \begin{array}{ccccc}\mathrm{I}&2y& +& 5x& =& 3\\\mathrm{II}& x &-& y &=& 1\end{array}

    3. I5y3x=10II4x+5y=16\def\arraystretch{1.25} \begin{array}{ccccc}\mathrm{I}&5y& -& 3x& =& 10\\\mathrm{II}& 4x &+& 5y &=& 16\end{array}

  9. 9

    Test your knowledge!

    1. Which of the following is a system of linear equations? Check all the answers that apply.

    2. How many solutions has the following linear system of equations?

      I3=x+2yII1=x+2y\def\arraystretch{1.25} \begin{array}{rrll}\mathrm{I} &-3& = &x& + &2y&\\\mathrm{II} &1& = &x& + &2y&\end{array}

    3. How many solutions does the following system of equations have?

      I92x32y=3II3x=2+y\def\arraystretch{1.25} \begin{array}{rrll}\mathrm{I} &\frac{9}{2}x&-&\frac{3}{2}y&=&3\\\mathrm{II} &3x& = &2&+&y\end{array}

    4. How many solutions does the following linear system of equations have?

      I2x+y=56IIx2y=2\def\arraystretch{1.25} \begin{array}{rrll}\mathrm{I} &2x&+&y&=&\frac56\\\mathrm{II} &x&-&2y& = &2\end{array}

  10. 10

    Determine the solution sets of the following systems of linear equations.

    1. (I)2y=2x40(II)3x=102y\def\arraystretch{1.25} \begin{array}{lrcll}(\text I)&2y&=&2x-40\\(\text {II})&3x&=&10-2y\end{array}

    2. (I)    12x35y=3(II)  14x+y=8\def\arraystretch{1.25} \begin{array}{l}(\text I)\;\;\frac 12 x-\frac35y=3\\(\text{II})\;\frac 14x+y=8\end{array}

  11. 11

    A hotel has 105 beds, which are located in 40 two- and three-bed rooms. How many two-and-three-bed rooms does the hotel have?

    Solve the problem by using a system of equations!

  12. 12

    A farmer keeps chickens and rabbits in his barn. He counts a total of 120 legs. There are three times more chickens than rabbits. How many chickens and rabbits does the farmer have?

    Solve by suing a system of equations!

  13. 13

    Determine the solution sets of the following systems of nonlinear equations.

    1. (I)4x+8y=53(II)2x4y=16\def\arraystretch{1.25} \begin{array}{rcll}(\text{I})&\frac 4x+\frac 8y&=&\frac53\\(\text{II})&\frac 2x-\frac 4y&=&-\frac16\end{array}

      where x,y0x,y \neq 0

    2. (I)7x12y=56(II)4y+52=9x\def\arraystretch{1.25} \begin{array}{rrcl}(\text I)&\frac{7}{x}-\frac{12}{y}&=&\frac{5}{6}\\\left(\text{II}\right)&\frac{4}{y}+\frac{5}{2}&=&\frac{9}{x}\end{array}

      where x,y0x,y \neq 0

    3. (I)    43x+1=23y13(II)  25x10=47y6\def\arraystretch{1.25} \begin{array}{l}(\text I)\;\;\frac{4}{3x+1}=\frac{2}{3y-13}\\(\text{II})\;\frac 2{5x-10}=\frac{4}{7y-6}\end{array}

      where x{13;2}x\notin\left\{-\frac{1}{3};2\right\} and y{133;67}y\notin\left\{\frac{13}{3};\frac{6}{7}\right\}

    4. (I)32x183y+2=15(II)52x1+43y+2=815\def\arraystretch{1.25} \begin{array}{rrcl}(\text I)&\frac{3}{2x-1}-\frac{8}{3y+2}&=&-\frac{1}{5}\\\left(\text{II}\right)&\frac5{2x-1}+\frac4{3y+2}&=&\frac8{15}\end{array}

      where x12x\ne\frac{1}{2} and y23y \neq -\frac 23


This content is licensed under
CC BY-SA 4.0Info