Solve the systems of equations using the Gauss-Jordan method.
3x+4y=−12x+5y=−3
First, write down the extended coefficient matrix.
(34−125−3)
Then divide the first line by 3, the second by 2.
→I:3,II:2(143−13152−32)
Now subtract the first line from the second line.
→II−I(143−13076−76)
Then divide the second line by 76.
→II:76(143−1301−1)
Then subtract from the first line 43 times the second line.
→I−43⋅II(10101−1)
Now you can read the solution in the right column:
⇒x=1;y=−1
3x−4y=−262x+3y=28
(3−4−262328)
Then divide the first line by 3 and the second by 2.
→I:3,II:2(1−43−26313214)
→II−I(1−43−2630176683)
Then divide the second line by 176.
→II:176(1−43−263018)
Then subtract from the first line −43 times the second line.
→I−(−43)⋅II(102018)
⇒x=2;y=8
x+2y−z=2x+y+2z=92x+3y−3z=−1
(12−111223−3|29−1)⟶III−2⋅III−I(12−10−130−1−1|27−5)⟶III−II(12−10−1300−4|27−12)
⟶III:(−4)II:(−1)(12−101−3001|2−73)
The third line implies:
z=3
Plug this into the second line.
y−9=−7
⇒y=2
Plug y and z into the first line.
x+4−3=2
x=1
⇒x=1;y=2;z=3