Skip to content or footer

Course

Introduction: Systems of Linear Equations - Part 2

9Example: substitution method

Now look at the equations that give the ages of Tina's father and mother.

Solve the problem using the substitution method:

I2v+1.5m=150IIm+3=v2\def\arraystretch{1.25} \begin{array}{lcccl}\mathrm{I} &2v&+&1.5m&=&150&\\\mathrm{II} &m&+&3&=&v-2\end{array}

Step 1: Resolve equation II\mathrm{II}

Which equation you solve for which unknown is partly a "sharp look", partly a matter of taste! Here the equation II\mathrm{II} is solved for v v.

IIm+3=v2+2IIv=m+5\def\arraystretch{1.25} \begin{array}{lrcll}\mathrm{II}& m+3&=&v-2& \qquad|+2\\\mathrm{II}'& v&=&\color{#009900}{m+5}&\end{array}

Step 2: Plug II\mathrm{II}' into I\mathrm{I}

I2(m+5)+1.5m=150I2m+10+1.5m=150I3.5m+10=15010I3.5m=140:3.5Im=40\def\arraystretch{1.25} \begin{array}{rrll}\mathrm{I}& 2\color{#009900}{(m+5)} + 1.5m &= &150\\\mathrm{I}& 2m+10 + 1.5m &= &150\\\mathrm{I}& 3.5m+10&= &150&\qquad |-10\\\mathrm{I}&3.5m&=&140& \qquad|:3.5\\\mathrm{I}&\color{#cc0000}m&=&\color{#cc0000}{40}\end{array}

Step 3: Plug m into II\mathrm{II}'

IIv=40+5IIv=45\def\arraystretch{1.25} \begin{array}{rrl}\mathrm{II}'&v&=&\color{#cc0000}{40} + 5\\\mathrm{II}'&\color{#009999}{v}&=&\color{#009999}{45}\end{array}

Tina now knows how old her parents are thanks to you. Her mother is 40\color{#cc0000}{40} years old and her father is 45 \color{#009999}{45} years old.

You can also write this down formally as a solution set:

L={(mv)=(4045)}\mathbb{L}=\{(m|v)=(\color{#cc0000}{40}|\color{#009999}{45})\}.


This content is licensed under
CC BY-SA 4.0Info