Skip to content or footer

Sine and Cosine theorem on a triangle

The sine and cosine theorems establish relationships between side lengths and angles in any triangle.

For any triangle with sides aa, bb, cc and the respective opposite angles α\alpha, β\beta, γ\gamma we have the:

Sine theorem

asin(α)=bsin(β)=csin(γ).\frac{a}{\sin\left(\alpha\right)}=\frac{b}{\sin\left(\beta\right)}=\frac{c}{\sin\left(\gamma\right)}.

Cosine theorem

  • c2=a2+b22abcos(γ)c^2=a^2+b^2-2ab\cdot\cos\left(\gamma\right)

  • b2=a2+c22accos(β)b^2=a^2+c^2-2ac\cdot\cos\left(\beta\right)

  • a2=b2+c22bccos(α)a^2=b^2+c^2-2bc\cdot\cos\left(\alpha\right)

Geogebra File: https://assets.serlo.org/legacy/6492_iZV9VMFFJJ.xml

Alternative formulation of the sine theorem

By transformations, the sine theorem can also be brought to the following forms:

sin(α)a=sin(β)b=sin(γ)c.\displaystyle \frac{\sin\left(\alpha\right)}{a}=\frac{\sin\left(\beta\right)}{b}=\frac{\sin\left(\gamma\right)}{c}.

ab=sin(α)sin(β)\frac{a}{b}=\frac{\sin\left(\alpha\right)}{\sin\left(\beta\right)} ac=sin(α)sin(γ)\frac{a}{c}=\frac{\sin\left(\alpha\right)}{\sin\left(\gamma\right)} bc=sin(β)sin(γ)\frac{b}{c}=\frac{\sin\left(\beta\right)}{\sin\left(\gamma\right)}

The Pythagorean theorem as a special case of the cosine theorem

For γ=90\gamma=90^\circ we obtain a right triangle with cos(90)=0\cos(90^\circ)=0. So the Phthagorean theorem c2=a2+b2c^2=a^2+b^2 is a special case of the cosine theorem.

Example

Consider a triangle ABCABC with given values  a=6.10a=6.10, α=45\mathrm\alpha=45^\circ, β=55\beta=55^\circ and hence also γ=80\gamma=80^\circ .

Geogebra File: https://assets.serlo.org/legacy/6534_HjoYFV5sL9.xml

First calculate the length of side bb using the sine theorem:

asin(α)=bsin(β)\frac{a}{\sin(\alpha)}=\frac{b}{\sin\left(\beta\right)} \Rightarrow Plug in the known values.

6,1sin(45)=bsin(55)\frac{6{,}1}{\sin\left(45^{\circ}\right)}=\frac{b}{\sin\left(55^{\circ}\right)} \Rightarrow Solve for bb .

b=6.1sin(55)sin(45)=7.1\Rightarrow b=\frac{6.1\cdot\sin(55^{\circ})}{\sin(45^{\circ})}=7.1

Now calculate the length of the side cc using the cosine theorem:

c=a2+b22abcos(γ)c=\sqrt{a^2+b^2-2ab\cdot\cos\left(\gamma\right)} \Rightarrow Plug in the values.

=6.12+7.1226.17.1cos(80)=8.5=\sqrt{6.1^2+7.1^2-2\cdot6.1\cdot7.1\cdot\cos\left(80^{\circ}\right)}=8.5

Video


This content is licensed under
CC BY-SA 4.0Info