Skip to content or footer

Exercises: Terms with Square Roots

Here you will find mixed exercises on terms with square roots. Learn to simplify square roots and determine the numerical values of roots!

  1. 1

    For which numbers are the terms defined? Write them without square roots and think about whether an absolute value is necessary or not.

    1. 52x18x5\cdot\sqrt{2x}\cdot\sqrt{18x}

    2. 2a212a8a\displaystyle\frac{\sqrt{2a^2}\cdot\sqrt{12a}}{\sqrt{8a}}

    3. (d2)2\left(\sqrt{d-2}\right)^2

    4. (d2)2\sqrt{\left(d-2\right)^2}

  2. 2

    What is the domain of definition?

    1. x36\sqrt{\mathrm x-36}

    2. 36+x2\sqrt{36+\mathrm x^2}

    3. 1x+36\frac1{\sqrt{\mathrm x+36}}

    4. x236\sqrt{\mathrm x^2-36}

  3. 3

    What is the maximum domain of definition? If possible, write the term without a square root sign.

    1. 49a4b2\sqrt{49a^4b^2}

    2. (b)2\sqrt{\left(-b\right)^2}

    3. b  2\sqrt{-b}^{\;2}

    4. (12x)2\sqrt{\left(1-2x\right)^2}

    5. (xy)2\sqrt{\left(x-y\right)^2}

    6. x2+y2\sqrt{x^2+y^2}

    7. x2y2\sqrt{x^2\cdot y^2}

  4. 4

    Simplify the following terms.

    1. 500+39858345\sqrt{500}+3\sqrt{98}-5\sqrt8-3\sqrt{45}

    2. 64k2\sqrt{64k^2}

    3. (x5y5a:x3y3a2)25xa                (x,  y,  z  >  0)\left(\sqrt{\frac{x^5y}{5a}}:\sqrt{\frac{x^3y^3}{a^2}}\right)\cdot\sqrt{\frac{25x}a}\;\;\;\;\;\;\;\;\left(x,\;y,\;z\;>\;0\right)

  5. 5

    Simplify the term 169x+169x2\sqrt{169}\cdot x+\sqrt{169\cdot x^2} and determine for which values of xx the term gets 00.

  6. 6

    When solving quadratic equations, one obtains expressions with square roots, like the following two. Simplify them.

    1. x1/2=5±52+472727x_{1/2}=\frac{-5\pm\sqrt{5^2+4\cdot\sqrt{7}\cdot2\sqrt{7}}}{2\sqrt{7}}

    2. x1/2=5±52+472727x_{1/2}=\frac{-5\pm\sqrt{5^2+4\cdot\sqrt{7}\cdot2\sqrt{7}}}{2\sqrt{7}}

  7. 7

    Give an argumentation, for why 1a=aa\frac1{\sqrt a}=\frac{\sqrt a}a for all positive aa.

  8. 8

    For which values of xx are the following statements true?

    1. x2=x\sqrt{x^2}=-x

    2. (x1)2=x1\sqrt{\left(x-1\right)^2}=x-1


This content is licensed under
CC BY-SA 4.0Info