Skip to content or footer

Relations between trigonometric functions

Sine, cosine and tangent are in different relationships. A distinction is made between the complement relationships and the supplement relationships.

Complement relationships

Dreieck

  • sin(90α)=cos(α)\sin(90^{\circ}-\alpha)=\cos(\alpha)

  • cos(90α)=sin(α)\cos(90^\circ-\alpha)=\sin(\alpha)

  • tan(90α)=1tan(α)\tan(90^\circ-\alpha)=\frac1{\tan(\alpha)}

Since in a triangle the sum of the interior angles is always 180°180°, the following applies in a right triangle β=90°α\beta=90°-\alpha.

Using the sine, cosine and tangent formulas, you can see:

sin(90°α)=opposite cathetushypotenuse=bc\sin(90°-\alpha)=\frac{\text{opposite cathetus}}{\text{hypotenuse}}=\frac{b}{c}

cos(α)=adjacent cathetushypotenuse=bc.\cos(\alpha)=\frac{\text{adjacent cathetus}}{\text{hypotenuse}}=\frac{b}{c}.

Hence,  sin(90°α)=cos(α)\;\sin(90°-\alpha)=\cos(\alpha).

The other equations can be explained in the same way.

Example

Consider the given triangle. Calculate cos(α) \cos(\alpha) in the same way as above.

Dreieck

With the complement relation you can equate cos(α) \cos(\alpha) and sin(90°α) \sin(90°-\alpha).

cos(α)=sin(90°α)\cos(\alpha)=\sin(90°-\alpha)

Because of the sum of the interior angles, the following equation applies.

sin(90°α)=sin(β)\sin(90°-\alpha)=\sin(\beta)

Insert the value of β\beta, calculate the result and round it to 22 decimal places.

sin(β)=sin(40°)0.59.\sin(\beta)=\sin(40°)\approx0.59.

Therefore, cos(α)0.59.\cos(\alpha)\approx0.59.

Supplement relationships

Sine

Kosine

Tangent

sin(180°+α)=sin(α)\sin(180° + \alpha)=-\sin(\alpha)

cos(180+α)=cos(α)\cos(180^\circ+\alpha)=-\cos(\alpha)

tan(180+α)=+tan(α)\tan(180^\circ+\alpha)=+{\textstyle\tan}(\alpha)

sin(180°α)=+sin(α)\sin(180°-\alpha)=+\sin(\alpha)

cos(180°α)=cos(α)\cos(180°-\alpha)=-\cos(\alpha)

tan(180α)=tan(α)\tan(180^\circ-\alpha)=-\tan(\alpha)

sin(360α)=sin(α)\sin(360^\circ-\alpha)=-\sin(\alpha)

cos(360α)=+cos(α)\cos(360^\circ-\alpha)=+\cos(\alpha)

tan(360α)=tan(α)\tan(360^\circ-\alpha)=-\tan(\alpha)

Visualization

sin(180°+α)=sin(α)  \sin(180°+\alpha)=-\sin(\alpha)\; and   cos(180°+α)=cos(α)  \;\cos(180°+\alpha)=-\cos(\alpha)\; can be tested, here


This content is licensed under
CC BY-SA 4.0Info