Skip to content or footer

Exercises: Finding line equations

  1. 1

    The following function graphs are given:

    Koordinatensystem mit 4 Graphen
    1. Which of the four graphs belongs to the equation y=54x1y=\frac{5}{4}x-1 ?


    2. Wie lautet die Gleichung zum Graphen III?

  2. 2

    The following diagrams contain graphs of linear functions. Determine the function terms.

    1. Aufgabenstellung a
    2. Aufgabenstellung b
  3. 3

    Determine the equation of the following straight line:

    Gerade als Graph im Koordinatensystem
  4. 4

    Calculate the gradient of the straight line through the given points.

    1. A(57)A(5 | 7), B(38)B(-3 | 8)

    2. A(12)A(1 | 2), B(34)B(3 | 4)

  5. 5

    Solve the following exercises.

    1. What is the gradient of the straight line through the points P(03)P(0|3) and Q(23)Q(2|−3)?


    2. Set up the equation of the line through the points P(13)P(1|3) and Q(31)Q(3|−1) .


  6. 6

    What is the gradient of the line through the points  P(03)\mathrm{P}\left(0|3\right)  and  Q(23)\mathrm{Q}\left(2|-3\right) ? What is its function equation?


  7. 7

    Set up the equation of the straight line through the points P(13)\mathrm P\left(1| 3\right)  and  Q(31)\mathrm Q\left(3|-1\right)  .

  8. 8

    Set the equation of the straight line with gradient m=43m=-\frac43 through the point P(20.5)P(-2 | -0.5) and draw it in a coordinate system.

  9. 9

    Write the equation of the straight line that runs through the point P(33)P(-3\vert3) and has the gradient m=2m=-2. Draw the straight line.

  10. 10

    Set up the equation of the line through the two points and draw it.

    1. P(20)P(2|0)  and  Q(22)Q(-2|2)

    2. P(0.51.5)P(0.5|1.5) and  Q(53)Q(5|3)

    3. P(21)P(-2|1)  and  Q(64)Q(6|4)

    4. P(41)P(-4|1)  and  Q(11)Q(1|-1)

  11. 11

    Given are the y-intercept t=2t=2 and the point P(31)P(3|-1). Calculate the corresponding equation of the line and plot the line.

  12. 12

    For a linear function  h(x)\mathrm h\left(\mathrm x\right)  , suppose we know:

    h(0)=3\mathrm h\left(0\right)=3  and  h(2)=4\mathrm h\left(-2\right)=4. Determine  h(x)\mathrm h\left(\mathrm x\right) .


This content is licensed under
CC BY-SA 4.0Info