Exercises: Computing with Square Roots
With these square root exercises, you will learn to simplify root terms and compute their value.
- 1
Simplify and calculate:
79+532+42+53−33
= 79+532+42+53−33 ↓ Take the root 9.
= 7⋅3+532+42+53−33 ↓ Compute the product.
= 21+532+42+53−33 ↓ Compute the squares.
= 21+59+16+53−33 ↓ Conclude.
= 21+525+53−33 ↓ Take the root 25.
= 21+5⋅5+53−33 ↓ Compute the product.
= 21+25+53−33 = 46+53−33 ↓ Conclude using the root laws.
= 46+(5−3)3 = The solution is 46+23
- 2
Simplify if possible:
- 53+23
- 64−24
64−24=
Use the root law for subtracting roots and simplify.
=(6−2)4=44=4⋅2=8
Alternative solution
You can also calculate the solution without the root laws:
64−24=
Calculate the root.
6⋅2−2⋅2=
Calculate.
12−4=8
Do you have a question?
- 34+33
34+33
Here you cannot use the root law to add roots because the radicands are not equal. So you can't further simplify this term.
What you could do is factoring out a three: 3⋅(4+3)
However, this is not always helpful.
Do you have a question?
- 3⋅7
- 2⋅8
- 327
- (−27)2
(−27)2
Use the root law for taking roots of squares.
=∣−27∣=27
Do you have a question?
- (2⋅9)2
(2⋅9)2=(18)2
Use the root law for taking squares of a root.
=18
Do you have a question?
- 7⋅7
- 2521
2521
Use the root law for converting powers into roots.
=25=5
Do you have a question?
- 3
Simplify as far as possible.
(1−3)⋅(1+3)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Do you have a question?
(2108−754):27
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
(2108−754):27 = ↓ Convert the ":" into a fraction.
= 27(2108−754) ↓ Write the fractions individually.
= 272108−27754 ↓ Pull a 4=2 out of the first root.
= 27427−277⋅2⋅27 ↓ Shorten the fractions.
= 4−72 Do you have a question?
(2−18)2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
(2−18)2 = ↓ Apply the binomial formulas.
= 22−2⋅2⋅18+182 = 2−12+18 = 8 Alternative Solution
(2−18)2 = (2−32)2 ↓ conclude
= (−22)2 = (−2)2⋅(2)2 = 4⋅2 = 8 Do you have a question?
(27−3)(1−28)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
(27−3)(1−28) = ↓ Pull the 2 out of the root as: 27=4⋅7
= (28−3)(1−28) ↓ Multiply out the brackets.
= 28−28−3+328 ↓ Simplify.
= 28−31+328 = 428−31 Do you have a question?
363+672−428−178
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
363+672−428−178 = ↓ Factorise the values under the root.
= 37⋅9+62⋅36−47⋅4−172⋅4 ↓ Take square roots.
= 3⋅37+6⋅62−4⋅27−342 = 97+362−87−342 ↓ Conclude.
= 7+22 Do you have a question?
This content is licensed under
CC BY-SA 4.0 → Info