Solve the linear systems of equations using the substitution method.
II3x+4=y
II4y−3x=9
Für diese Aufgabe benötigst Du folgendes Grundwissen: Substitution method
First you have to solve one of the two equations for one variable. In the present case you can see that equation I is already solved for y.
Plug y=3x+4 from equation I into II
II4⋅(3x+4)−3x=9
Multiply out the parenthesis and solve for x.
II12x+16−3x9xx===9−7−97∣−16∣:9
Plug x=−97 from II into I
I3⋅(−97)+4y==y35
And finally write down the solution set.
L={(−9735)}.
Do you have a question?
II3s−4t=4
II4s+t=−2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Substitution method
First you have to solve one of the two equations for s or t. It is, for instance, a good idea to solve equation II for t.
Solve equation for t.
II4s+tt==−2−2−4s∣−4s
Plug t=−2−4s from II into I
II3s−4⋅(−2−4s)=4
Multiply out the parenthesis and solve for s.
I3s+8+16s19ss===4−4−194∣−8∣:19
Substitute s=−194 into the transformed second equation to determine t.
IItt==−2−4⋅(−194)−1922
And finally, write down the solution set.
L={(s∣t)=(−194∣−1922)}.
Do you have a question?
This content is licensed under
CC BY-SA 4.0 → Info