Skip to content or footer

Determine the solution sets of the following systems of nonlinear equations.

  1. (I)4x+8y=53(II)2x4y=16\def\arraystretch{1.25} \begin{array}{rcll}(\text{I})&\frac 4x+\frac 8y&=&\frac53\\(\text{II})&\frac 2x-\frac 4y&=&-\frac16\end{array}

    where x,y0x,y \neq 0

  2. (I)7x12y=56(II)4y+52=9x\def\arraystretch{1.25} \begin{array}{rrcl}(\text I)&\frac{7}{x}-\frac{12}{y}&=&\frac{5}{6}\\\left(\text{II}\right)&\frac{4}{y}+\frac{5}{2}&=&\frac{9}{x}\end{array}

    where x,y0x,y \neq 0

  3. (I)    43x+1=23y13(II)  25x10=47y6\def\arraystretch{1.25} \begin{array}{l}(\text I)\;\;\frac{4}{3x+1}=\frac{2}{3y-13}\\(\text{II})\;\frac 2{5x-10}=\frac{4}{7y-6}\end{array}

    where x{13;2}x\notin\left\{-\frac{1}{3};2\right\} and y{133;67}y\notin\left\{\frac{13}{3};\frac{6}{7}\right\}

  4. (I)32x183y+2=15(II)52x1+43y+2=815\def\arraystretch{1.25} \begin{array}{rrcl}(\text I)&\frac{3}{2x-1}-\frac{8}{3y+2}&=&-\frac{1}{5}\\\left(\text{II}\right)&\frac5{2x-1}+\frac4{3y+2}&=&\frac8{15}\end{array}

    where x12x\ne\frac{1}{2} and y23y \neq -\frac 23


This content is licensed under
CC BY-SA 4.0Info