Serlo Logo The Open Learning Platform

Exercises: Drawing graphs of linear functions

  1. 1

    Draw the graph corresponding to the given table of values.

    1. 𝐱

      8

      4

      0

      4

      8

      𝐲

      0

      1

      2

      3

      4

    2. 𝐱

      2

      0

      2

      4

      𝐲

      20

      10

      0

      10

  2. 2

    Draw the graph of the linear functions in a coordinate system!

    1. f(x)=2x+4

    2. g(x)=12x2

    3. h(x)=5

  3. 3

    Draw the graphs of the functions with the following equation:

    1. y=3x2

    2. y=2x

    3. y=34x1

    4. y=12x+2

    5. y=34x+1

  4. 4

    Draw the graphs of the following lines with the point of intersection with the y-axis and the gradient triangle. Calculate the point of intersection with the x-axis and check the result using the graph.

    1. f(x)=2x5

    2. f(x)=x3

    3. f(x)=12x+1

    4. f(x)=12x2

    5. f(x)=13x12

    6. f(x)=14x+32

    7. f(x)=23x+2

    8. f(x)=34x1

    9. f(x)=3x+510

    10. f(x)=57x124

  5. 5

    Draw the graphs of each of the following functions in a coordinate system.

    1. f(x)=23x+2

    2. f(x)=2x4

    3. f(x)=54x+1

    4. f(x)=4x+5

    5. f(x)=0.3x

    6. f(x)=2.5

  6. 6

    Consider the function f with y=0.3x.

    1. Compute a table of values for f with x[3,3] where the step length is Δx=1.

    2. Plot the points of the function f in a coordinate system and draw the graph of the function f.

    3. Zu welcher besonderen Art von Geraden gehört der Graph der Funktion f?

    4. Check by calculation whether the points P(5|1.4) and Q(8|2.4) lie on the graph of the function f.