Calculate the intersection of the pairs of lines.
y=3x+4 and y=−2x+14
y = 3x+4 y = −2x+14 ↓ The functions are set equal to calculate the x-coordinate of the intersection.
3x+4 = −2x+14 +2x; −4 5x = 10 :5 x = 2 ↓ Insert the x-value into one of the two functions to calculate the y-coordinate
y = 3⋅2+4 ↓ First multiply, then divide.
y = 10 ↓ ⇒Intersection point: S(2∣10)
Do you have a question?
y=6x−3 and y=7x−11
y = 6x−3 y = 7x−11 ↓ The functions are set equal to calculate the x-coordinate of the intersection.
6x−3 = 7x−11 +3; −7x −x = −8 :(−1) x = 8 ↓ Insert the x-value into one of the two functions to calculate the y-coordinate
y = 6⋅8−3 ↓ First multiply, then divide.
y = 45 ↓ ⇒ Intersection point: S(8∣45)
Do you have a question?
y=8x+3 and y=−4x+6
y = 8x+3 y = −4x+6 ↓ The functions are set equal to calculate the x-coordinate of the intersection.
8x+3 = −4x+6 −3; +4x 12x = 3 :12 x = 123=41 ↓ Insert the x-value into one of the two functions to calculate the y-coordinate
y = 8⋅41+3 ↓ First multiply, then divide.
y = 5 ↓ ⇒ Intersection point: S(41∣5)
Do you have a question?
y=7x−14 and y=7x−3
Geraden mit gleicher Steigung (hier 7) schneiden sich nicht, denn sie sind parallel zueinander.Setzt man die Funktionsterme gleich, so erhält man eine falsche Aussage, also keinen Schnittpunkt.
7x−14 = 7x−3 −7x −14 = −3 ↓ False statement!
Do you have a question?
y=61x−4 and y=31x−10
y = 61x−4 y = 31x−10 ↓ The functions are set equal to calculate the x-coordinate of the intersection.
61x−4 = 31x−10 −31x;+4 −6x1 = −6 :(−61) x = 36 ↓ Insert the x-value into one of the two functions to calculate the y-coordinate
y = 31⋅36−10 ↓ First multiply, then divide.
y = 2 ↓ ⇒ Intersection point: S(36∣2)
Do you have a question?
y=21x+23 and y=21
y = 21x+23 y = 21 ↓ The functions are set equal to calculate the x-coordinate of the intersection.
21x+23 = 21 −23 21x = −1 ⋅2 x = −2 ↓ Insert the x-value into one of the two functions to calculate the y-coordinate
y = 21 ↓ ⇒ Intersection point: S(−2∣0.5)
Do you have a question?
This content is licensed under
CC BY-SA 4.0 → Info