Simplify the following expressions with integer exponents as far as possible.
(z2k−5:z3):zk
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Apply the power laws.
(z2k−5:z3):zk = (z2k−5−3):zk = z2k−8:zk = z2k−8−k = zk−8 Do you have a question?
90⋅3n−2−3n
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Write 90 as 32⋅10.
90⋅3n−2−3n = 10⋅32⋅3n−2−3n ↓ Apply the power laws.
= 10⋅32+n−2−3n = 10⋅3n−3n ↓ Factorize 3n.
= 3n⋅(10−1) = 9⋅3n ↓ Write 9 as 32.
= 32⋅3n ↓ Apply the power laws.
= 32+n Do you have a question?
[(4x)3]5:(2x)6 for x=0
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Apply the power laws.
[(4x)3]5:(2x)6 = (4x)3⋅5:(26x6) = (4x)15:(26x6) = (415x15):(26x6) = (415x15)⋅(x626) ↓ Write 26 as 43, so you can shorten.
= (415x15)⋅(x643) = 412x9 Do you have a question?
(1−3a)2k+1(3a−1)2k−1 for a=31
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Factorize (−1).
(1−3a)2k+1(3a−1)2k−1 = (−3a+1)2k+1(−1)2k−1(−3a+1)2k−1 ↓ Divide and apply the power laws.
= (−1)2k−1(−3a+1)2k−1−(2k+1) ↓ Multiply out.
= (−1)2k−1(−3a+1)2k−1−2k−1 = (−1)2k−1(−3a+1)−2 ↓ A negative exponent corresponds to a fraction.
= (−1)2k−1⋅(−3a+1)21 = (−3a+1)2(−1)2k−1 = −(−3a+1)21 Do you have a question?
(cn+1d2n6a2b−2)3:[ab−12(cd)n⋅3ab−2cnd2n]−2 for a,b,c,d=0
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Apply the power laws.
(cn+1d2n6a2b−2)3:[ab−12(cd)n⋅3ab−2cnd2n]−2 = (c3n+3d6n63a6b−6):(2(cd)n⋅cnd2nab−1⋅3ab−2)2 = (c3n+3d6n⋅b663a6):(22(cd)2n⋅c2nd4na2b−2⋅32a2b−4) ↓ Convert division into multiplication by "flipping" the fraction.
= (c3n+3d6n⋅b663a6)⋅(a2b−2⋅32a2b−422(cd)2n⋅c2nd4n) ↓ Conclude.
= 9a4c3n+3d6n216a64c4nd6n = 9216a24cn−3 = 96a2cn−3 Do you have a question?
- (−y3)2b+5⋅[(−z)4]3b+3x2a+5:(yz)6b+10⋅[(−z)3]2b−1x2a
Assuming that x,y,z>0, b∈Z
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Since x is greater than 0, you can multiply by the reciprocal. For the value of
A=(−y3)2b+5⋅[(−z)4]3b+3x2a+5:(yz)6b+10⋅[(−z)3]2b−1x2a you then obtain
A = (−y3)2b+5⋅[(−z)4]3b+3x2a+5:(yz)6b+10⋅[(−z)3]2b−1x2a ↓ Multiply out
= (−y3)2b+5⋅[(−z)4]3b+3x2a+5⋅x2a(yz)6b+10⋅[(−z)3]2b−1 = (−y3)2b+5⋅(−z)4(3b+3)x2a+5⋅x2a(yz)6b+10⋅(−z)3(2b−1) = (−y)6b+15⋅(−z)12b+12x2a+5⋅x2a(yz)6b+10⋅(−z)6b−3 ↓ Factor out (−1).
= (−1)6b+15⋅y6b+15⋅(−1)12b+12⋅z12b+12x2a+5⋅x2a(yz)6b+10⋅(−1)6b−3⋅z6b−3 ↓ Decompose the (yz)6b+10.
= (−1)6b+15⋅y6b+15⋅(−1)12b+12⋅z12b+12x2a+5⋅x2ay6b+10⋅z6b+10⋅(−1)6b−3⋅z6b−3 = (−1)6b+15⋅(−1)12b+12x2a+5−2a⋅y6b+10−(6b+15)⋅z6b+10⋅(−1)6b−3⋅z6b−3−(12b+12) = (−1)6b+15⋅(−1)12b+12x2a+5−2a⋅y6b+10−6b−15⋅z6b+10⋅(−1)6b−3⋅z6b−3−12b−12 ↓ Resolve the bracket and simplify.
= (−1)6b+15⋅(−1)12b+12x5⋅y−5⋅z6b+10⋅(−1)6b−3⋅z−6b−15 = (−1)6b+15⋅(−1)12b+12x5⋅y−5⋅z6b+10−6b−15⋅(−1)6b−3 = (−1)6b+15⋅(−1)12b+12x5⋅y−5⋅z−5⋅(−1)6b−3 = (−1)6b+15+12b+12x5⋅y−5⋅z−5⋅(−1)6b−3 = (−1)18b+27x5⋅y−5⋅z−5⋅(−1)6b−3 ↓ The factors of (−1) can be shortened.
= 1x5⋅y−5⋅z−5⋅(−1)6b−3−(18b+27) = 1x5⋅y−5⋅z−5⋅(−1)−12b−30 = x5⋅y−5⋅z−5⋅(−1)−12b−30 = y5⋅z5x5⋅(−1)−12b−30 Since −12b−30 is even, you get (−1)−12b−30=1, so the final result reads y5z5x5 , or equivalently, (yzx)5.
Do you have a question?
(3ac−22a−1b2)−3 for a,b,c=0
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Apply the power laws.
(3ac−22a−1b2)−3 = 3−3a−3c62−3a3b−6 = 23c6b6a333a3 = 8c6b6a3⋅27a3 = 8b6c627a6 Do you have a question?
(vu)n⋅(uv)3n+4:(u−v)2n+1 for u,v=0
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Resolve the brackets using the power laws.
(vu)n⋅(uv)3n+4:(u−v)2n+1 = vnun⋅u3n+4v3n+4:u2n+1−v2n+1 ↓ Write the division as a fraction.
= u2n+1−v2n+1vnun⋅u3n+4v3n+4 ↓ Resolve the double fraction.
= vnun⋅u3n+4v3n+4⋅−v2n+1u2n+1 = vn⋅u3n+4⋅(−v2n+1)un⋅v3n+4⋅u2n+1 = u3n+4⋅(−1)⋅vn+2n+1un+2n+1⋅v3n+4 = u3n+1−(3n+4)⋅(−1)⋅v3n+4−(3n+1) ↓ Shorten by using the power laws.
= u−3⋅(−1)⋅v3 = u3(−1)⋅v3 = u3−v3 = −(uv)3 Do you have a question?
xm+2x5+1−xm2x2−2+xm−22−x for x=0
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Expand the second fraction by x2 to get a common denominator.
xm+2x5+1−xm2x2−2+xm−22−x = xm+2x5+1−xm+22x4−2x2+xm⋅x−22−x ↓ Apply the power laws to x−2.
= xm+2x5+1−xm+22x4−2x2+xm2x2−x3 ↓ Get to a common denominator.
= xm+2x5+1−xm+22x4−2x2+xm+22x4−x5 = xm+2x5+1−2x4+2x2+2x4−x5 = xm+21+2x2 Do you have a question?
(z+5z−3)2p+1⋅(z−35+z)p+1:(z+5z−3)4p for z∈{−5;3}
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Apply the power laws.
(z+5z−3)2p+1⋅(z−35+z)p+1:(z+5z−3)4p = (z+5z−3)2p+1−4p⋅(z−35+z)p+1 = (z+5z−3)1−2p⋅(z−35+z)p+1 = (z+5z−3)1−2p⋅(z+5z−3)−(p+1) ↓ Resolve the bracket.
= (z+5z−3)1−2p⋅(z+5z−3)−p−1 ↓ Apply the power laws.
= (z+5z−3)1−2p+(−p)−1 = (z+5z−3)−3p = (z−3z+5)3p Do you have a question?
(1+t2)2⋅[t1−(2t−1)−1]−2 for t∈{−2;0;2}
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Get the fraction in the rightmost round bracket on a common denominator.
(1+t2)2⋅[t1−(2t−1)−1]−2 = (1+t2)2⋅[t1−(2t−2)−1]−2 ↓ Apply the power laws.
= (1+t2)2⋅[t1−(t−22)]−2 ↓ Get the square bracket on a common denominator.
= (1+t2)2⋅[t(t−2)1(t−2)−t(t−2)t⋅2]−2 = (1+t2)2⋅[t(t−2)t−2−2t]−2 = (1+t2)2⋅[t(t−2)−t−2]−2 ↓ Apply the power laws.
= (1+t2)2⋅[−t−2t(t−2)]2 ↓ Get the round bracket on a common denominator.
= (tt+t2)2⋅[−t−2t(t−2)]2 = (t2+t)2⋅[−t−2t(t−2)]2 ↓ Apply the power laws to conclude both brackets.
= (t⋅(−t−2)(2+t)⋅t(t−2))2 ↓ Shorten by t.
= ((−t−2)(2+t)⋅(t−2))2 ↓ Factor out a (−1).
= (−1(t+2)(2+t)⋅(t−2))2 ↓ Shorten.
= (−1t−2)2 = (−(t−2))2 = (t−2)2 Do you have a question?
Re-formulate the expression to a single fraction that does not contain any negative exponents.
(x2y)34a−1z2:(xy2z)−2(2a)−3
Für diese Aufgabe benötigst Du folgendes Grundwissen: Powers
Apply the power laws.
(x2y)34a−1z2:(xy2z)−2(2a)−3 = x6⋅y34⋅a1⋅z2:(xy2z)21(2a)31 ↓ Division can be done by "flipping the fraction".
= x6⋅y34⋅a1⋅z2⋅(2a)31(xy2z)−21 ↓ Resolve the double fraction.
= x6⋅y34⋅a1⋅z2⋅(xy2z)21⋅1(2a)3 = x6⋅y3a4z2⋅x2⋅y4⋅z28a3 = x6+2⋅y3+4⋅z2a4z2⋅8a3 ↓ Finally, shorten.
= x8y74⋅8a2 = x8y732a2 Do you have a question?
This content is licensed under
CC BY-SA 4.0 → Info