Skip to content or footer

Trigonometry on the unit circle

Trigonometrie

If you apply the angle α\alpha to the xx-axis, you can read off the values of the sine and cosine of α\alpha on the unit circle.

If you look at the right triangle with angle α\mathrm\alpha in the unit circle, the hypotenuse has length 11:

  • cos(α)=adjacent cathetus\color{#FD6600}{\cos\left(\alpha\right)}=\color{#FD6600}{\text{adjacent cathetus}}

  • sin(α)=opposite cathetus\color{#CC0000}{\sin\left(\alpha\right)}=\color{#CC0000}{\text{opposite cathetus}}

Presign

The trigonometric functions can change their sign when passing from one quadrant to the next. The change is illustrated in the following graphs.

Einheitskreis Sinusvorzeichen

Sine

Einheitskreis Kosinusvorzeichen

Cosine

Einheitskreis Tangensvorzeichen

Tangent

Important values

The table below lists some important values for the trigonometric functions. For the first five values of the sine and cosine, there is an easy way to remember the values. They have the general form 12n\frac{1}{2}\sqrt{n}, where you put the numbers 00 to 44 in ascending order for the sine and in descending order for the cosine.

Angle

0°

30°30°

45°45°

60°60°

90°90°

180°180°

270°270°

360°360°

sin(α)\sin(\alpha)

120=0\frac{1}{2}\sqrt{0}=0

121=12\frac{1}{2}\sqrt{1}=\frac{1}{2}

122\frac{1}{2}\sqrt{2}

123\frac{1}{2}\sqrt{3}

124=1\frac{1}{2}\sqrt{4}=1

00

1-1

00

cos(α)\cos(\alpha)

124=1\frac{1}{2}\sqrt{4}=1

123\frac{1}{2}\sqrt{3}

122\frac{1}{2}\sqrt{2}

121=12\frac{1}{2}\sqrt{1}=\frac{1}{2}

120=0\frac{1}{2}\sqrt{0}=0

1-1

00

11

tan(α)\tan(\alpha)

00

33\frac{\sqrt{3}}{3}

11

3\sqrt{3}

*

00

*

00

: At these points the tangent does not exist, because the tangent is defined as "sine over cosine" and at these points the cosine is equal to zero.

Visualization by an applet

Video about the tangent on the unit circle

Exercises: Trigonometry on the unit circle


This content is licensed under
CC BY-SA 4.0Info