Skip to content or footer

Exercises: Sine, Cosine and Tangent on the unit circle

  1. 1

    Consider on the unit circle: For which angles between 00^\circ and 360360^\circ you have sin(α)=0.5\sin\left(\alpha\right)=0.5?

  2. 2

    Determine all solutions of the following equations in the range  γ[180;720]\gamma\in\left[-180^\circ;720^\circ\right]  ( part (a) ) or  x[2π;  6π]x\in\left[-2\mathrm\pi;\;6\mathrm\pi\right] (part (b) - (c) )

    1. cos(γ)=122\cos\left(\gamma\right)=\frac{1}{2}\sqrt{2}

    2. sin(x2)=1\sin\left(\frac{x}{2}\right)=1

    3. sin(x)=2\sin\left(x\right)=-2

    4. 3

      For which angles γ\gamma with γ[0;  360]\gamma\in\left[0^\circ;\;360^\circ\right] do we have cos(γ)=sin(γ)\cos\left(\gamma\right)=-\sin\left(\gamma\right)

    5. 4

      This exercise is about calculating sin(60°)\sin(60°), without knowing it before.

      1. Draw a large coordinate system. (1  unit of length  =^  8 squares\text{ unit of length} \; \hat{=} \; 8 \text{ squares}). Construct the unit circle with the compass and apply a 60°60° angle to the xx-axis with the set square. Construct the length sin(60°)\sin(60°) and measure it with the ruler.

      2. Calculate sin(60°)\sin(60°) exactly. First find the value for cos(60°) \cos(60°). Construct an equilateral triangle for it.

        Einheitskreis gleichseitiges Dreieck

    This content is licensed under
    CC BY-SA 4.0Info