Skip to content or footer

Exercises: Linear functions, zeros, axis intercepts

  1. 1

    Read off the yy-axis intercept from the graph.

    1. Graph 1

    2. Graph 2

    3. Graph 3

    4. Graph 4

    5. Bild

    6. Graph 6

    7. Graph 7

    8. Graph 8

    9. Graph 9

    10. Graph 10

  2. 2

    Read off the zero from the graph.

    1. Graph 1

    2. Graph 2

    3. Graph 4

    4. Graph 5

    5. Graph 6

    6. Graph 8

  3. 3

    Look at the graphs of the functions a(x)a(x) and c(x) c(x).

    Read off the yy-axis intercept and the slope of the lines and enter them in the boxes!

    Can you work out the function term from this?

    Bild
    1. What is the yy-axis intercept of a(x)a(x)?


    2. What is the slope of a(x)a(x)?


    3. What is the function term of a(x)a(x)?

    4. What is the y-axis intercept of c(x)?


    5. What is the slope of c(x)c(x)?


    6. What is the function term of c(x)c(x)?

  4. 4

    Consider the lines  g:  y=2x3g:\;y=2x-3   and   h:  y=0.5x+3h:\;y=-0.5x+3 .

    1. Check whether the points A(11)A(1|-1), B(0.51.5)B(0.5|1.5), C(65)C(-6|5), D(10255) D(-102|55) and E(4587)E(45|87) are on either of both lines.

    2. Complete the coordinates so that the points lie on hh: P(5?)(5 | ?) , Q(3.5?)Q(-3.5 | ?) , R(?12)R(? | 12) , S(?7,5)S(? | -7{,}5).

    3. Show that T(2.41.8)T(2.4|1.8) lies on both lines. What does this mean?

  5. 5

    Draw the graphs of the following lines including the point of intersection with the yy-axis and a gradient triangle. Calculate the point of intersection with the xx-axis and check the result using the graph.

    1. f(x)  =  2x5f(x)\;=\;2x-5

    2. f(x)=x3f(x)=-x-3

    3. f(x)=12x+1f\left(x\right)=\frac{1}{2}x+1

    4. f(x)=12x2f\left(x\right)=-\frac{1}{2}x-2

    5. f(x)=13x12f\left(x\right)=\frac{1}{3}x-\frac{1}{2}

    6. f(x)=14x+32f\left(x\right)=-\frac{1}{4}x+\frac{3}{2}

    7. f(x)=23x+2f\left(x\right)=\frac{2}{3}x+2

    8. f(x)=34x1f\left(x\right)=-\frac{3}{4}x-1

    9. f(x)=3x+510f\left(x\right)=-3x+\frac{5}{10}

    10. f(x)=57x124f\left(x\right)=\frac{5}{7}x-\frac{12}{4}

  6. 6

    Draw the lines y=3x2y=3x-2 and y=34x+1y=-\frac34x+1 into a coordinate system. Determine the zeros and the point of intersection.

  7. 7

    Determine the intersection points with the coordinate axes of the following straight lines.

    1. y=2x+3.5y=−2x+3.5

    2. y=5x7y=5x-7

    3. y=32x+2y=\frac32x+2

    4. y=25x+52y=-\frac{2}{5}x+\frac{5}{2}

    5. y=2(x23)y=2(x-\frac23)

    6. y=4312xy=-\frac43-\frac12x

  8. 8

    Set up the function equation for the line through the points P(2530)P(-25|30) and Q(5530) Q(55|-30) and calculate the intersection of the line with the xx-axis.

  9. 9

    Transform the equation into the form y=ax+by=ax+b.

    1. 2xy=62x-y=6

    2. x=12(y+1)x=\frac12(y+1)

    3. 25y=2x1\frac25y=2x-1

    4. y=3(2x1)y=3(2x-1)

  10. 10

    Two lines f(x)f\left(x\right) and g(x)g\left(x\right) intersect on the xx-axis in x=4x=4.

    Determine possible function terms.

  11. 11

    Consider the linear function  f(x)=3127x{f}\left({x}\right)=3-\frac{12}{7}{x} .

    1. Draw the graph and mark the function value f(1)f\left(-1\right) .

    2. Is the point P(7  1,54) P\left(\sqrt7 \;| -1{,}54\right) on the graph of f(x)f\left(x\right)?

  12. 12

    Consider the lines  g:  y=2x3g:\;y=2x-3   and   h:  y=0.5x+3h:\;y=-0.5x+3 .

    1. Check whether the points A(11)A(1|-1), B(0.51.5)B(0.5|1.5), C(65)C(-6|5), D(10255)D(-102|55) and E(4587)E(45|87) lie on one of the straight lines.

    2. Complete the coordinates so that the points lie on hh: P(5?)P(5 | ?) , Q(3,5?)Q(-3{,}5 | ?) , R(?12)R(? | 12) , S(?7,5)S(? | -7{,}5).

    3. Show that T(2.41.8)T(2.4|1.8) lies on both straight lines. What does this mean?


This content is licensed under
CC BY-SA 4.0Info