Skip to content or footer

Exercises: Distances, parallel and perpendicular lines

  1. 1

    Determine the equation of the line that passes through the point PP and is perpendicular to the given line y=mx+ty = m x + t.

    1. y=3x+2y=3x+2

      P(35)P(3|5)

    2. y=0.5x+1y=0.5x+1

      P(12)P(1|2)

    3. y=5x+6y=-5x+6

      P(101)P(-10|1)

    4. y=4x+3y=4x+3

      P(25)P(2|-5)

    5. y=23x+2y=-\frac{2}{3}x+2

      P(46)P(4|6)

    6. y=13x2y=\frac{1}{3}x-2

      P(25)P(2|5)

  2. 2

    Determine the equation of the line gg that is parallel to the line hh and passes through the point PP.

    1. hh: y=3x2y=3x-2; P(10)    P(1|0)   \;

    2. hh: y=x4y=x-4; P(12)    P(1|2)   \;

    3. hh: y=4xy=4x; P(518)    P(5|18)   \;

    4. hh: y=2x+1y=-2x+1; P(14)P(-1|4)

  3. 3

    Determine the equation of the straight line through ...

    1. the point P(34)P(-3 | 4) and being parallel to the xx-axis.

    2. the point Q(25)Q(2 | 5) and is parallel to the bisector of the 2nd quadrant (the diagonal pointing down).

    3. the point R(42)R(-4|2) and is parallel to the yy-axis.

    4. the point S(23)S(2 |-3) and is parallel to the bisector of the 1st quadrant (the diagonal pointing up).

    5. the origin and is parallel to the straight line AB\overline{\mathrm{AB}} with A(7260)A(-72|-60) and B(2420)B(-24|-20).

  4. 4

    Two perpendicular lines intersect at S(21)S\left(-2|-1\right) .

    Determine at least one possible line equations.

  5. 5

    Calculate the distance of the line to the origin.

    1. y=34x5y=\frac{3}{4}x-5

    2. y=12x+2y=-\frac{1}{2}x+2

  6. 6

    Calculate the distance of the parallel lines  g: y=12x+2y=-\frac{1}{2}x+2   and  h: y=12x3y=-\frac12x-3 .

  7. 7

    Consider the equation y=32x+1y=\frac{3}{2}x+1.

    1. Zeichne die Gerade zu der Gleichung in ein Koordinatensystem.

    2. Set up the equation of the perpendicular line through the point P(32.25)P(3|2.25).

    3. Draw the line in the same coordinate system as the line from exercise 1.

    4. Calculate the intersection of the two lines.


This content is licensed under
CC BY-SA 4.0Info