Calculate the intersection points of a straight line.
Consider are the function equations of the two lines g1(x) and g2(x) . Calculate the intersection of the two lines and draw the lines in a coordinate system.
g1(x)=21x+2g2(x)=−21x+4
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Calculating the line intersection
Set g1(x) and g2(x) equal.
21x+2 = −21x+4 +21x−2 21x+21x = 4−2 xS = 2 ↓ Plug x=xs into g1(x).
y = 1+2 yS = 3 ⇒S(xS∣yS)=S(2∣3)
Sketch
Connect the y-axis intercepts (here A and B) with the calculated intersection point S. This way you obtain the two lines.
Do you have a question?
g1(x)=2x−1g2(x)=−2x+1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Calculating the line intersection
Set g1(x) and g2(x) equal.
2x−1 = −2x+1 +2x+1 2x+2x = 1+1 4x = 2 :4 xS = 21 ↓ Plug x=xs into g1(x).
y = 2⋅21−1 y = 1−1 yS = 0 ⇒S(xS∣yS)=S(21∣0)
Sketch
Connect the y-axis intercepts (here A and B) with the calculated intersection point S. This way you obtain the two lines.
Do you have a question?
g1(x)=43x−4g2(x)=−21x−1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Calculating the line intersection
Set g1(x) and g2(x) equal.
g1(x) = g2(x) 43x−4 = −21x−1 +21x+4 43x+21x = −1+4 1.25x = 3 1.25 x = 1.253 xS = 2.4 ↓ Plug x=xs into g1(x).
y = 43⋅2.4−4 y = 1.8−4 yS = −2.2 ⇒S(xS∣yS)=S(2.4∣−2.2)
Sketch
Connect the y-axis intercepts (here A and B) with the calculated intersection point S. This way you obtain the two lines.
Do you have a question?
g1(x)=−21x+2g2(x)=21x+3
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Calculating the line intersection
Set g1(x) and g2(x) equal.
g1(x) = g2(x) −21x+2 = 21x+3 +21x−3 2−3 = 21x+21x xS = −1 ↓ Plug x=xs into g1(x).
y = −21⋅(−1)+2 y = 21+2 yS = 2.5 ⇒S(xS∣yS)=S(−1∣2.5)
Sketch
Connect the y-axis intercepts (here A and B) with the calculated intersection point S. This way you obtain the two lines.
Do you have a question?
g1(x)=32x+2g2(x)=21x+3
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Calculating the line intersection
Set g1(x) and g2(x) equal.
g1(x) = g2(x) 32x+2 = 21x+3 −21x−2 ↓ Get the fractions on a common denominator.
32x−21x = 3−2 ↓ subtract
64x−63x = 3−2 61x = 1 :61 ↓ dividing by a fraction → multiplying with the inverse
x = 611 xS = 6 ↓ Plug x=xs into g1(x).
y = 32⋅6+2 ↓ y = 4+2 yS = 6 ⇒S(xS∣yS)=S(6∣6)
Sketch
Connect the y-axis intercepts (here A and B) with the calculated intersection point S. This way you obtain the two lines.
Do you have a question?
g1(x)=43x+1g2(x)=21x+2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Calculating the line intersection
Set g1(x) and g2(x) equal.
⇒S(xS∣yS)=S(4∣4)
Sketch
Connect the y-axis intercepts (here A and B) with the calculated intersection point S. This way you obtain the two lines.
Do you have a question?
This content is licensed under
CC BY-SA 4.0 → Info