Skip to content or footer

Exercises: Power Laws

  1. 1

    Apply the power laws to simplify the following expressions:

    1. 32313^2 \cdot 3^1

    2. 42494124^2 \cdot 4^9 \cdot 4^{-12}

    3. 482325594^8 \cdot 2^{-3} \cdot 2^5 \cdot 5^9

    4. (77)7\left(7^7\right)^7

    5. 9293:35\dfrac{9^2}{9^{-3}}:3^{5}

    6. 262268133133\dfrac{\tfrac{26^2}{26^8}}{\tfrac{13^{-3}}{13^3}}

  2. 2

    Conclude as far as possible.

    1. a3  :  a6a^3\;:\;a^6

    2. 2x2    3x32x^{-2}\;\cdot\;3x^3

    3. 1012  :  10310^{-12}\;:\;10^{-3}

    4. 6  :  239326\;:\;2^3-9\cdot3^{-2}

    5. xn    xx^{-n}\;\cdot\;x

    6. 0.5x2+1.5x30.5x^2+1.5x^3

    7. (x3y4y5y2)2\left(\frac{x^3y^{-4}}{y^{-5}y^2}\right)^{-2}

    8. (2x3)2\left(2x^3\right)^2

  3. 3

    Find all terms that are equivalent to each other:  

    • Term 1: x10  x^{10}\;

    • Term 2: x6x^{-6}

    • Term 3: (x2)4\left(x^{-2}\right)^4

    • Term 4: x5+x5x^5+x^5

    • Term 5: (x)6\left(-x\right)^6

    • Term 6: x8x^{-8}

    • Term 7: x15:x5x^{15}:x^5

    • Term 8: x22x16x^{-22}\cdot x^{16}

    • Term 9: x6-x^6

  4. 4

    Simplify the following terms.

    1. 10    102  :  104+10010\;\cdot\;10^{-2}\;:\;10^4+10^0

    2. x1x2x0x3x4x^{-1}\cdot x^2\cdot x^0\cdot x^{-3}\cdot x^4

    3. 101+10210^{-1}+10^{-2}

    4. x1+x2x^{-1}+x^{-2}

    5. x2x2x4x^{-2}-\frac{x^2}{x^4}

    6. (1x+x2)2x\left(\frac1x+x^{-2}\right)\cdot2x

  5. 5

    Simplify the following term using the power laws

     

    a4d2c9a2b6d9c5\displaystyle a^4\cdot d^{-2}\cdot c^9\cdot a^2\cdot b^6\cdot d^{-9}\cdot c^5
  6. 6

    Simplify the following expressions with integer exponents as far as possible.

    1. (z2k5:z3)  :  zk\left(z^{2k-5}:z^3\right)\;:\;z^k

    2. 903n23n90\cdot3^{n-2}-3^n

    3. [(x4)3]5:  (x2)6\left[\left(\frac x4\right)^3\right]^5:\;\left(\frac x2\right)^6 for x0x\neq 0

    4. (3a1)2k1(13a)2k+1\dfrac{\left(3a-1\right)^{2k-1}}{\left(1-3a\right)^{2k+1}} for a13a\neq \dfrac{1}{3}

    5. (6a2b2cn+1d2n)3:  [2(cd)nab1    cnd2n3ab2]2\left(\dfrac{6\mathrm a^2\mathrm b^{-2}}{\mathrm c^{\mathrm n+1}\mathrm d^{2\mathrm n}}\right)^3:\;\left[\dfrac{2\left(\mathrm{cd}\right)^\mathrm n}{\mathrm{ab}^{-1}}\;\cdot\;\dfrac{\mathrm c^\mathrm n\mathrm d^{2\mathrm n}}{3\mathrm{ab}^{-2}}\right]^{-2} for a,b,c,d0a,b,c,d \neq 0

    6. x2a+5(y3)2b+5  [(z)4]3b+3  :  x2a(yz)6b+10  [(z)3]2b1\displaystyle \frac{x^{2a+5}}{\left(-y^3\right)^{2b+5}\cdot\;\left[\left(-z\right)^4\right]^{3b+3}}\;:\;\frac{x^{2a}}{\left(\mathrm{yz}\right)^{6b+10}\cdot\;\left[\left(-z\right)^3\right]^{2b-1}}

      Assuming that x,y,z  >  0x,y,z\;>\;0, bZb\in \Z

    7. (2a1b23ac2)3\left(\frac{2a^{-1}b^2}{3\mathrm{ac}^{-2}}\right)^{-3} for a,b,c0a,b,c \neq 0

    8. (uv)n  (vu)3n+4:  (vu)2n+1\left(\frac uv\right)^n\cdot\;\left(\frac vu\right)^{3n+4}:\;\left(\frac{-v}u\right)^{2n+1} for u,v0u,v \neq 0

    9. x5+1xm+22x22xm+2xxm2\frac{x^5+1}{x^{m+2}}-\frac{2x^2-2}{x^m}+\frac{2-x}{x^{m-2}} for x0x\neq 0

    10. (z3z+5)2p+1  (5+zz3)p+1:  (z3z+5)4p\displaystyle\left(\frac{z-3}{z+5}\right)^{2p+1}\cdot\;\left(\frac{5+z}{z-3}\right)^{p+1}:\;\left(\frac{z-3}{z+5}\right)^{4p} for z∉{5;3}z \not\in \{-5;3\}

    11. (1+2t)2  [1t(t21)1]2\left(1+\frac2t\right)^2\cdot\;\left[\frac1t-\left(\frac t2-1\right)^{-1}\right]^{-2} for t∉{2;0;2}t \not\in \{-2;0;2\}

    12. Re-formulate the expression to a single fraction that does not contain any negative exponents.

      4a1z2(x2y)3  :  (2a)3(xy2z)2\frac{4a^{-1}z^2}{\left(x^2y\right)^3}\;:\;\frac{\left(2a\right)^{-3}}{\left(\mathrm{xy}^2z\right)^{-2}}

  7. 7

    Write as a decimal number.

    1. 31073\cdot10^7


    2. 6.41046.4\cdot10^{-4}


    3. 1.61061.6\cdot10^{-6}


    4. 7.41097.4\cdot10^9


  8. 8

    We are looking for powers with negative or positive exponents. Mark all correct answers with a cross.

    1. 35 000 000 00035\ 000\ 000\ 000

    2. 470 000 000470\ 000\ 000

    3. 0.00000010.0000001

    4. 0.00000540.0000054

  9. 9

    Atoms are everywhere

    A helium atom has a diameter of about 610116\cdot10^{-11} meters, and a hydrogen atom weighs about 1.710271.7 \cdot 10^{-27} kilograms.

    The mass of Jupiter is about 1.8991027kg1.899 \cdot 10^{27} kg , of which about 1.710271.7 \cdot 10^{27} is hydrogen.

    Bild
    1. What idea can you get of the size of atoms and their mass?

    2. Calculate the number of hydrogen atoms that Jupiter contains.


This content is licensed under
CC BY-SA 4.0Info