Exercises: Drawing graphs of linear functions
- 1
Draw the graph corresponding to the given table of values.
x
−8
−4
0
4
8
y
0
1
2
3
4
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
Draw the five given points in a coordinate system and draw a straight line through the points.
Do you have a question?
x
−2
0
2
4
y
−20
−10
0
10
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
Draw the four given points in a coordinate system and draw a straight line through the points.
Do you have a question?
- 2
Draw the graph of the linear functions in a coordinate system!
f(x)=−2x+4
Für diese Aufgabe benötigst Du folgendes Grundwissen: Slope/Gradient of a line
Drawing the linear function
First read off the y-intercept and the slope from the function term of the linear function.
In this case:
f(x)=−2x+4
You obtain a y-intercept of t=4 and a slope of m=−2.
First draw the intersection with the y-axis that results from the y-axis intercept. This is at A(0/4).
Then draw a gradient triangle using the gradient. To do this, go one length unit to the right and two length units down. This gives you the point B=(1/2). Now draw the straight line through points A and B.
You obtain the graph Gf of f(x).
Do you have a question?
g(x)=21x−2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Slope/Gradient of a line
Drawing the linear function
First read off the y-intercept and the slope from the function term of the linear function.
In this case:
f(x)=21x−2
You obtain a y-intercept of t=−2 and a slope of m=21.
First draw the intersection with the y-axis that results from the y-axis intercept. This is at C(0/−2).
Then draw a gradient triangle using the gradient. To do this, go one length unit to the right and two length units down. This gives you the point D=(2/−1). Now draw the straight line through points C and D.
You obtain the graph Gg of g(x).
Do you have a question?
h(x)=5
Für diese Aufgabe benötigst Du folgendes Grundwissen: Slope/Gradient of a line
Drawing the linear function
The function h(x)=5 represents a special case of a linear function. The slope of h(x) is 0.
This means that the function value does not change regardless of the variable x.
So if you draw the function value h(x)=5 for each x in a coordinate system, you get a straight line that runs parallel to the x axis at the height y=5.
Do you have a question?
- 3
Draw the graphs of the functions with the following equation:
y=3x−2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Determine one point
y=3x−2
−2 is the t within the general line equation, or in other words, the y-axis intercept.
⇒P(0∣−2)
Find the slope
Determine the slope m of the function
y=3x−2
3 is the m within the general line equation, or in other words, the slope.
m=3
Draw the line
Go from the previously determined point one unit to the right and 3 upwards, since m is equal to 3. Here is a second point of the function.
Then connect the two points to form a straight line.
Do you have a question?
y=2−x
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Transform the equation
y=2−x
First, we do a little transformation, such that we get the form of a general line equation.
y=−x+2
Determine one point
y=−x+2
+2 is the t within the general line equation, or in other words, the y-axis intercept.
⇒P(0∣2)
Find the slope
Determine the slope m of the function
y=−x+2
−1 is the m within the general line equation, or in other words, the slope.
m=−1
Draw the line
From the previously determined point, go one unit to the right and 1 downwards, since m is negative. Here is a second point of the function.
Then connect the two points to form a straight line.
Do you have a question?
y=−43x−1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Determine one point
y=−43x−1
−1 is the t within the general line equation, or in other words, the y-axis intercept.
⇒P(0∣−1)
Find the slope
Determine the slope m of the function
y=−43x−1
−43 is the m within the general line equation, or in other words, the slope.
m=−43
Draw the line
From the previously determined point, go one unit to the right and 43 downwards, since m is negative. Here is a second point of the function.
Then connect the two points to form a straight line.
Do you have a question?
y=−21x+2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Determine one point
y=−21x+2
+2 is the t within the general line equation, or in other words, the y-axis intercept.
⇒P(0∣2)
Find the slope
Determine the slope m of the function
y=−21x+2
−21 is the m within the general line equation, or in other words, the slope.
m=−21
Draw the line
From the previously determined point, go one unit to the right and 21 downwards, since m is negative. Here is a second point of the function.
Then connect the two points to form a straight line.
Do you have a question?
y=43x+1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Determine one point
y=43x+1
1 is the t within the general line equation, or in other words, the y-axis intercept.
⇒P(0∣1)
Find the slope
Determine the slope m of the function
y=43x+1
43 is the m within the general line equation, or in other words, the slope.
m=43
Draw the line
From the previously determined point go one unit to the right and 43 upwards, since m is positive. Here is a second point of the function.
Then connect the two points to form a straight line.
Do you have a question?
- 4
Draw the graphs of the following lines with the point of intersection with the y-axis and the gradient triangle. Calculate the point of intersection with the x-axis and check the result using the graph.
f(x)=2x−5
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=2x−5
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0∣−5)
⇒mf=2
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
2x−5 = 0 +5 2x = 5 :2 x0 = 2.5 ⇒Px(2.5∣0)
Do you have a question?
f(x)=−x−3
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=−x−3
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0∣−3)
⇒mf=−1
−x−3 = 0 +x −3 = x0 ⇒Px(−3∣0)
Do you have a question?
f(x)=21x+1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=21x+1
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0∣1)
⇒mf=21
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
21x+1 = 0 −1 21x = −1 ⋅2 x0 = −2 ⇒Px(−2∣0)
Do you have a question?
f(x)=−21x−2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=−21x−2
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0∣−2)
⇒mf=−21
Calculate the point of intersection with the x-axis. Set the function term equal to 0..
−21x−2 = 0 +2 −21x = 2 ⋅(−2) x0 = −4 ⇒Px(−4∣0)
Do you have a question?
f(x)=31x−21
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=31x−21
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0−21)
⇒mf=31
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
31x−21 = 0 +21 31x = 21 ⋅3 x0 = 23 ⇒Px(23∣0)
Do you have a question?
f(x)=−41x+23
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=−41x+23
First read off the y-axis intercept and the slope from the function equation.
⇒Py(023)
⇒mf=−41
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
−41x+23 = 0 −23 −41x = −23 ⋅(−4) x0 = 6 ⇒Px(6∣0)
Do you have a question?
f(x)=32x+2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=32x+2
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0∣2)
⇒mf=32
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
32x+2 = 0 −2 32x = −2 :32 x0 = −3 ⇒Px(−3∣0)
Do you have a question?
f(x)=−43x−1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=−43x−1
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0∣−1)
⇒mf=−43
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
−43x−1 = 0 +1 −43x = 1 :(−43) x0 = −34 ⇒Px(−34∣0)
Do you have a question?
f(x)=−3x+105
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=−3x+105
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0105)
⇒mf=−3
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
−3x+105 = 0 −105 −3x = −21 :(−3) x0 = −61 ⇒Px(61∣0)
Do you have a question?
f(x)=75x−412
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
f(x)=75x−412=75x−3
First read off the y-axis intercept and the slope from the function equation.
⇒Py(0∣−3)
⇒mf=75
Calculate the point of intersection with the x-axis. Set the function term equal to 0.
75x−3 = 0 +3 75x = 3 :75 x0 = 521 ⇒Px(521∣0)
Do you have a question?
- 5
Draw the graphs of each of the following functions in a coordinate system.
f(x)=−32x+2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
Do you have a question?
f(x)=2x−4
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
Do you have a question?
f(x)=−45x+1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
Do you have a question?
f(x)=−4x+5
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
Do you have a question?
f(x)=−0.3x
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
Do you have a question?
The comparison with the general form of the straight line equation , results in: Intercept t=0 and slope m=−103
From the value of the y-axis intercept t=0 it follows that our line is a line passes through the origin: A=(0∣0).
Write the slope as a fraction: −0,3=−103. Go 10 to the right and 3 down according to the slope. There you find a second point on the line B(10∣−3).
The line is drawn through the two points A and B.
f(x)=2.5
Für diese Aufgabe benötigst Du folgendes Grundwissen: Lines in coordinate systems
The y-value of the straight line is always 2.5. Therefore, the straight line is parallel to the x-axis.
Do you have a question?
- 6
Consider the function f with y=0.3⋅x.
Compute a table of values for f with x∈[−3,3] where the step length is Δx=1.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
The table of values for y=0.3⋅x with step length Δx=1:
x
-3
-2
-1
0
1
2
3
y
-0.9
-0.6
-0.3
0
0.3
0.6
0.9
Do you have a question?
Plot the points of the function f in a coordinate system and draw the graph of the function f.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Points of the function f in the coordinate system and graph of the function f:
Do you have a question?
Zu welcher besonderen Art von Geraden gehört der Graph der Funktion f?
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
The graph of the function f is a line that passes through the origin (0∣0) of the coordinate system.
Do you have a question?
Check by calculation whether the points P(5∣1.4) and Q(8∣2.4) lie on the graph of the function f.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Linear function
Insert the coordinates of P and Q into the function equation:
Point P(5∣1.4):
y = 0.3⋅x ↓ plug in coordinates
1.4 = 0.3⋅5 1.4 = 1.5 ↓ false statement
= Answer: The point P does not lie on the graph of the function f.
Point Q(8∣2.4) :
y = 0.3⋅x ↓ plug in coordinates
2.4 = 0.3⋅8 2.4 = 2.4 ↓ true statement
= Answer: The point Q lies on the graph of the function f.
Additional illustration of the graph with the two points P and Q
(Ths is not required by the problem setting, but just provided for better visualization.)
P(5∣1.4)∈/Gf
Q(8∣2.4)∈Gf
Do you have a question?
This content is licensed under
CC BY-SA 4.0 → Info