Skip to content or footer

Exercises: Drawing graphs of linear functions

  1. 1

    Draw the graph corresponding to the given table of values.

    1. x\textbf{x}

      8-8

      4-4

      00

      44

      88

      y\textbf{y}

      00

      11

      22

      33

      44

    2. x\textbf{x}

      2-2

      00

      22

      44

      y\textbf{y}

      20-20

      10-10

      00

      1010

  2. 2

    Draw the graph of the linear functions in a coordinate system!

    1. f(x)=2x+4f(x)=-2x+4

    2. g(x)=12x2g(x)=\frac{1}{2}x-2

    3. h(x)=5h(x)=5

  3. 3

    Draw the graphs of the functions with the following equation:

    1. y=3x2y=3x-2

    2. y=2xy=2-x

    3. y=34x1y=-\frac{3}{4}x-1

    4. y=12x+2y=-\frac{1}{2}x+2

    5. y=34x+1\mathrm{y}=\frac{3}{4}\mathrm{x}+1

  4. 4

    Draw the graphs of the following lines with the point of intersection with the yy-axis and the gradient triangle. Calculate the point of intersection with the xx-axis and check the result using the graph.

    1. f(x)  =  2x5f(x)\;=\;2x-5

    2. f(x)=x3f(x)=-x-3

    3. f(x)=12x+1f\left(x\right)=\frac{1}{2}x+1

    4. f(x)=12x2f\left(x\right)=-\frac{1}{2}x-2

    5. f(x)=13x12f\left(x\right)=\frac{1}{3}x-\frac{1}{2}

    6. f(x)=14x+32f\left(x\right)=-\frac{1}{4}x+\frac{3}{2}

    7. f(x)=23x+2f\left(x\right)=\frac{2}{3}x+2

    8. f(x)=34x1f\left(x\right)=-\frac{3}{4}x-1

    9. f(x)=3x+510f\left(x\right)=-3x+\frac{5}{10}

    10. f(x)=57x124f\left(x\right)=\frac{5}{7}x-\frac{12}{4}

  5. 5

    Draw the graphs of each of the following functions in a coordinate system.

    1. f(x)=23x+2\mathrm{f}\left(\mathrm{x}\right)=-\frac{2}{3}\mathrm{x}+2

    2. f(x)=2x4\mathrm{f}\left(\mathrm{x}\right)=2\mathrm{x}-4

    3. f(x)=54x+1\mathrm{f}\left(\mathrm{x}\right)=-\frac{5}{4}\mathrm{x}+1

    4. f(x)=4x+5\mathrm{f}(\mathrm{x})=-4\mathrm{x}+5

    5. f(x)=0.3x\mathrm{f}\left(\mathrm{x}\right)=-0.3\mathrm{x}

    6. f(x)=2.5\mathrm{f}\left(\mathrm{x}\right)=2.5

  6. 6

    Consider the function ff with y=0.3xy=0.3\cdot x.

    1. Compute a table of values for ff with x[3,3]x \in \left[-3{,}3\right] where the step length is Δx=1\Delta x =1.

    2. Plot the points of the function f f in a coordinate system and draw the graph of the function ff.

    3. Zu welcher besonderen Art von Geraden gehört der Graph der Funktion ff?

    4. Check by calculation whether the points P(51.4)P\left(5|1.4\right) and Q(82.4)Q\left(8|2.4\right) lie on the graph of the function f f.


This content is licensed under
CC BY-SA 4.0Info