Serlo Logo The Open Learning Platform

Exercises: Intersection of two lines

  1. 1

    Bestimme den Schnittpunkt beider Geraden und zeichne diesen in ein Koordinatensystem.

    1. f(x)=3x+54;g(x)=x1

    2. f:2yx=3;g(x)=12x+4

    3. f(x)=23x1;g(x)=16x4

    4. f:x=2;g(x)=34x32

  2. 2

    Determine the intersection of the two lines and draw the graphs in a coordinate system.

    f(x)=0.05x+20;g(x)=0.15x+15

  3. 3

    Calculate the intersection points of a straight line.

    Consider are the function equations of the two lines g1(x) and g2(x) . Calculate the intersection of the two lines and draw the lines in a coordinate system.

    1. g1(x)=12x+2g2(x)=12x+4

    2. g1(x)=2x1g2(x)=2x+1

    3. g1(x)=34x4g2(x)=12x1

    4. g1(x)=12x+2g2(x)=12x+3

    5. g1(x)=23x+2g2(x)=12x+3

    6. g1(x)=34x+1g2(x)=12x+2

  4. 4

    Consider the following graphs.

    AufgabeLineareFunktionen3
    1. Determine the function equations of all 4 lines.

    2. Determine the intersection of g and h , and the zero of f.

    3. Calculate the two intersections that lie outside the figure.

    4. What is the maximum number of intersections of four straight lines?

  5. 5

    Calculate the intersection of the pairs of lines.

    1. y=3x+4 and y=2x+14

    2. y=6x3 and y=7x11

    3. y=8x+3 and y=4x+6

    4. y=7x14 and y=7x3

    5. y=16x4 and y=13x10

    6. y=12x+32 and y=12

  6. 6

    Show by calculation that the three straight lines g1:y=0.5x ; g2:y=x1.5 and g3:y=2x+7.5 intersect at exactly one point.

  7. 7

    Check whether the following lines g,h and i run through a common point.

    1. g(x)=x+1;h:2y+x+4=0;3y5x=7

    2. g(x)=16x+32;h(x)=23x+2;i:2xy=3

  8. 8

    Determination of intersection points

    Consider the following two lines g and h.

    Image
    1. Determine the line equations of g and h.

    2. Read off the intersection point.