Skip to content or footer

Further exercises: Linear functions

  1. 1

    The straight line y=3xy = -3x is mirrored on the x x-axis.

    The mirrored straight line is then shifted upwards by 2 units.

    Determine the equation of the new straight line;

    a) by a drawing

    b) by computation

  2. 2

    Consider the functions  g(x)=0.75x+3g \left(x\right)=0.75x+3  and  h(x)=x2.5h\left(x\right)=-x-2.5 .

    The straight line h h is to be shifted in the yy-direction so that gg and the shifted line hh intersect the xx-axis at the same point.

    Determine the function term f(x)f\left(x\right) for the shifted line.

  3. 3

    Consider the point P(t    t2+3)P\left(\left.t\;\right|\;\frac t2+3\right) with tRt\in\mathbb{R}

    Choose some values for tt and plot the corresponding points in a coordinate system.

    How are the points located in the coordinate system? For which t t- values is the xx-coordinate equal to the yy-coordinate of point PP?

  4. 4

    Show that the line gg through  P1(k/k){\mathrm P}_1\left(\sqrt{\mathrm k}/\mathrm k\right)  and  P2(1/1){\mathrm P}_2\left(1/1\right)  has the slope  a1=k+1{\mathrm a}_1=\sqrt{\mathrm k}+1  and intersects the y-axis at  Py(0/k)P_y\left(0/-\sqrt k\right)

  5. 5

    Show that the points P(k22/k)P\left(\frac{k}{2}\sqrt{2}/k\right) lie on a straight line for all kRk\in\mathbb{R}.

    Determine the equation of the straight line.

  6. 6

    Find the function term of the linear function f(x)f\left(x\right) for:

    1. f(1)=7;  f(1)=3f\left(1\right)=7;\;f\left(-1\right)=3

    2. f(a)=0;  f(0)=af\left(a\right)=0;\;f\left(0\right)=a

    3. f(a)=1;  f(2a)=1f\left(a\right)=1;\;f\left(2 a\right)=-1

  7. 7

    Determining intersection points

    Three lines are drawn in the coordinate system. Read off the points of intersection from the figure.

    Bild Schnittpunkte
  8. 8

    Determining intersection points

    Consider a line gg and a line h h.

    Bild
    1. Determine the line equations of gg and h h.

    2. Lies den Schnittpunkt ab.


This content is licensed under
CC BY-SA 4.0Info