Skip to content or footer

Exercises: Intersection of two lines

  1. 1

    Bestimme den Schnittpunkt beider Geraden und zeichne diesen in ein Koordinatensystem.

    1. f(x)=3x+54;  g(x)=x1f\left(x\right)=-3x+\frac54;\;g\left(x\right)=-x-1

    2. f:  2yx=3;  g(x)=12x+4f:\;2y-x=3;\;g\left(x\right)=-\frac12x+4

    3. f(x)=23x1;  g(x)=16x4f\left(x\right)=-\frac23x-1;\;g\left(x\right)=\frac16x-4

    4. f:  x=2;  g(x)=34x32f:\;x=2;\;g\left(x\right)=-\frac34x-\frac32

  2. 2

    Determine the intersection of the two lines and draw the graphs in a coordinate system.

    f(x)=0.05x+20;          g(x)=0.15x+15f\left(x\right)=0.05x+20;\;\;\;\;\;g\left(x\right)=0.15x+15

  3. 3

    Calculate the intersection points of a straight line.

    Consider are the function equations of the two lines g1(x) g_1(x) and g2(x)g_2\left(x\right) . Calculate the intersection of the two lines and draw the lines in a coordinate system.

    1. g1(x)=12x+2          g2(x)=12x+4{g}_1\left(x\right)=\frac12x+2\;\;\;\;\;{g}_2\left(x\right)=-\frac12x+4

    2. g1(x)=2x1          g2(x)=2x+1{g}_1\left(x\right)=2x-1\;\;\;\;\;{g}_2\left(x\right)=-2x+1

    3. g1(x)=34x4          g2(x)=12x1{g}_1\left(x\right)=\frac34x-4\;\;\;\;\;{g}_2\left(x\right)=-\frac12x-1

    4. g1(x)=12x+2          g2(x)=12x+3{g}_1\left(x\right)=-\frac12x+2\;\;\;\;\;{g}_2\left(x\right)=\frac12x+3

    5. g1(x)=23x+2          g2(x)=12x+3{g}_1\left(x\right)=\frac23x+2\;\;\;\;\;{g}_2\left(x\right)=\frac12x+3

    6. g1(x)=34x+1          g2(x)=12x+2{g}_1\left(x\right)=\frac34x+1\;\;\;\;\;{g}_2\left(x\right)=\frac12x+2

  4. 4

    Consider the following graphs.

    AufgabeLineareFunktionen3
    1. Determine the function equations of all 4 lines.

    2. Determine the intersection of g and h , and the zero of f.

    3. Calculate the two intersections that lie outside the figure.

    4. What is the maximum number of intersections of four straight lines?

  5. 5

    Calculate the intersection of the pairs of lines.

    1. y=3x+4y=3x+4 and y=2x+14y=-2x+14

    2. y=6x3y=6x-3 and y=7x11y=7x-11

    3. y=8x+3y=8x+3 and y=4x+6y=-4x+6

    4. y=7x14y=7x-14 and y=7x3y=7x-3

    5. y=16x4y=\frac{1}{6}x-4 and y=13x10y=\frac{1}{3}x-10

    6. y=12x+32y=\frac{1}{2}x+\frac{3}{2} and y=12y=\frac{1}{2}

  6. 6

    Show by calculation that the three straight lines g1:y=0.5xg_1:y=0.5x ; g2:y=x1.5g_2: y=x-1.5 and g3:y=2x+7.5g_3: y=-2x+7.5 intersect at exactly one point.

  7. 7

    Check whether the following lines g,hg,h and ii run through a common point.

    1. g(x)=x+1;          h:  2y+x+4=0;          3y5x=7g\left(x\right)=x+1;\;\;\;\;\;h:\;2y+x+4=0;\;\;\;\;\;3y-5x=7

    2. g(x)=16x+32;          h(x)=23x+2;          i:  2xy=3g\left(x\right)=\frac16 x+\frac32;\;\;\;\;\; h\left( x\right)=-\frac23 x+2;\;\;\;\;\; i:\;2 x- y=3

  8. 8

    Determination of intersection points

    Consider the following two lines gg and h h.

    Bild
    1. Determine the line equations of gg and hh.

    2. Read off the intersection point.


This content is licensed under
CC BY-SA 4.0Info